Species and	Size clas	ssification	Bending	Tension	Shear	Compression	Compression	Modulus of	Minimum
commercial grade			Fb	parallel	parallel	perpendicular	parallel	Elasticity	Modulus of
5				to grain	to grain	to grain	to grain	É,	Elasticity
				Ft	Fv	Fc1	Fc		Emin
Southern Pine							1		1
Dense Select Structura	I		3050	1650	175	660	2250	1900000	690000
Select Structural			2850	1600	175	565	2100	1800000	660000
Non-Dense Select Stru	ctural		2650	1350	175	480	1950	1700000	620000
No. 1 Dense			2000	1100	175	660	2000	1800000	660000
No.1		2"- 4" wide	1850	1050	175	565	1850	1700000	620000
No.1 Non-Dense		2	1700	900	175	480	1700	1600000	580000
No.2 Dense			1700	875	175	660	1850	1700000	620000
No. 2			1500	825	175	565	1650	1600000	580000
No.2 Non-Dense			1350	775	175	480	1600	1400000	510000
No. 3 and Stud			850	475	175	565	975	1400000	510000
Construction			1100	625	175	565	1800	1500000	550000
Standard		4" wide	625	350	175	565	1500	1300000	470000
Utility			300	175	175	565	975	1300000	470000
Dense Select Structura	d.		2700	1500	175	660	2150	1900000	690000
Select Structural			2550	1400	175	565	2000	1800000	660000
Non-Dense Select Stru	ctural		2350	1200	175	480	1850	1700000	620000
No. 1 Dense	ccurat		1750	950	175	660	1900	1800000	660000
No.1			1650	900	175	565	1750	1700000	620000
No.1 Non-Dense		5"- 6" wide	1500	800	175	480	1600	1600000	580000
No.2 Dense		J=0 wide	1450	775	175	660	1750	1700000	620000
No. 2			1250	725	175	565	1600	1600000	580000
No.2 Non-Dense			1150	675	175	480	1500	1400000	510000
No. 3 and Stud			750	425	175	565	925	1400000	510000
Dense Select Structura	1		2450	1350	175	660	2050	1900000	690000
Select Structural			2300	1300	175	565	1900	1800000	660000
Non-Dense Select Stru	ctural		2100	1100	175	480	1750	1700000	620000
No. 1 Dense	cturui		1650	875	175	660	1800	1800000	660000
No.1		8" wide	1500	825	175	565	1650	1700000	620000
No.1 Non-Dense		o wide	1350	725	175	480	1550	1600000	580000
No.2 Dense			1400	675	175	660	1700	1700000	620000
No. 2			1200	650	175	565	1550	1600000	580000
No.2 Non-Dense			1100	600	175	480	1450	1400000	510000
No. 3 and Stud			700	400	175	565	875	1400000	510000
Dense Select Structura	1		2150	1200	175	660	2000	1900000	690000
Select Structural			2050	1100	175	565	1850	1800000	660000
Non-Dense Select Stru	ctural		1850	950	175	480	1750	1700000	620000
No. 1 Dense			1450	775	175	660	1750	1800000	660000
No.1		10" wide	1300	725	175	565	1600	1700000	620000
No.1 Non-Dense			1200	650	175	480	1500	1600000	580000
No.2 Dense			1200	625	175	660	1650	1700000	620000
No. 2			1050	575	175	565	1500	1600000	580000
No.2 Non-Dense			950	550	175	480	1400	1400000	510000
No. 3 and Stud			600	325	175	565	850	1400000	510000
Dense Select Structura	I		2050	1100	175	660	1950	1900000	690000
Select Structural			1900	1050	175	565	1800	1800000	660000
Non-Dense Select Stru	ctural		1750	900	175	480	1700	1700000	620000
No. 1 Dense			1350	725	175	660	1700	1800000	660000
No.1		12" wide	1250	675	175	565	1600	1700000	620000
No.1 Non-Dense			1150	600	175	480	1500	1600000	580000
No.2 Dense			1150	575	175	660	1600	1700000	620000
No. 2			975	550	175	565	1450	1600000	580000
No.2 Non-Dense			900	525	175	480	1350	1400000	510000
No. 3 and Stud			575	325	175	565	825	1400000	510000

Species and	ign Values for V Size classification	Bending	Tension	Shear	Compression	Compression	Modulus of	Minimum
commercial grade		Fb	parallel	parallel	perpendicular	parallel	Elasticity	Modulus of
0			to grain	to	to grain	to grain	Ē	Elasticity
			Ft	grain	Fc1	Fc		Emin
				Fv				
Southern Pine	•	(Surface	ed Dry –	Used in d	Iry service cor	nditions – 199	6 or less moistu	re content)
Dense Structural 86		2600	1750	175	660	2000	1800000	660000
Dense Structural 72	2" & wider	2200	1450	175	660	2000	1800000	660000
Dense Structural 65		2000	1300	175	660	2000	1800000	660000
Southern Pine		(Surface	ed Green	– Used i	n any service	condition)		
Dense Structural 86		2100	1400	165	440	1300	1600000	580000
Dense Structural 72	2-1/2" & wider	1750	1200	165	440	1100	1600000	580000
Dense Structural 65	2-1/2"-4" thick	1600	1050	165	440	1000	1600000	580000
Mixed Southern I	Pine							
Select Structural		2050	1200	175	565	1800	1600000	580000
No. 1	2"- 4" wide	1450	875	175	565	1650	1500000	550000
No. 2		1300	775	175	565	1650	1400000	510000
No. 3 and Stud		750	450	175	565	950	1200000	440000
Construction		1000	600	175	565	1700	1300000	470000
Standard	4" wide	550	325	175	565	1450	1200000	440000
Utility		275	150	175	565	950	1100000	400000
Select Structural		1850	1100	175	565	1700	1600000	580000
No. 1	5"-6" wide	1300	750	175	565	1550	1500000	550000
No. 2		1150	675	175	565	1550	1400000	510000
No. 3 and Stud		675	400	175	565	875	1200000	440000
Select Structural		1750	1000	175	565	1600	1600000	580000
No. 1	8" wide	1200	700	175	565	1450	1500000	550000
No. 2		1050	625	175	565	1450	1400000	510000
No. 3 and Stud		625	375	175	565	850	1200000	440000
Select Structural		1500	875	175	565	1600	1600000	580000
No. 1	10" wide	1050	600	175	565	1450	1500000	550000
No. 2		925	550	175	565	1450	1400000	510000
No. 3 and Stud		525	325	175	565	825	1200000	440000
Select Structural		1400	825	175	565	1550	1600000	580000
No. 1	12" wide	975	575	175	565	1400	1500000	550000
No. 2		875	525	175	565	1400	1400000	510000
No. 3 and Stud		500	300	175	565	800	1200000	440000

*Reference Design Values Notes

1.	structures calculatin reduction	s. For 2" to 4" thick lug design values the name	umber the DRY dresse atural gain in strengtl hen unseasoned luml	ed sizes shall be used and stiffness that c per shrinks. The gai	occurs as lumber dries ha n in load carrying capacit	ure content at the time s been taken into consi	of manufacture or use. In
2.	correspor	nding conversion facto	or shown below and i	ound to the nearest	multiply the appropriate 100,000 psi for E; to the b, Ft, and Fc if 1,000 psi	nearest 10,000 psi for	Emin; to the next lower
		Bending	Tension	Shear	Compression	Compression	Modulus of
		Fb	parallel	parallel	perpendicular	parallel	Elasticity
			to grain	to grain	to grain	to grain	E and Emin
			Ft	Fv	Fc1	Fc	
Convers Factor	ion	0.78	0.78	0.98	0.73	0.78	0.82
3.		tor. For sizes wider for the 12″ width.	than 12", use size fac	tors for Fb, Ft, and I	Fc specified for the 12" w	vidth. Use 100% of the	Fv, Fc1, E, and Emin
4.		lividual species or spe vidual species or spec	• •		ues to be used for the co	mbination shall be the	lowest design values for

****Adjustment Factors**

Repetitive Member Factor, Cr. Bending design values, Fb, for dimension lumber 2" to 4" thick shall be multiplied by the repetitive member factor, Cr = 1.15, when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than 24" on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

Wet Service Factor, Cm. When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table (for surfaced dry Dense Structural 86, Dense Structural 72, and Dense Structural 65 use tabulated surfaced green design values for wet service conditions without further adjustment):

Fb	Ft	Fv	Fc1	Fc	E and Emin
0.85*	1.0	0.97	0.67	0.8**	0.9
*when (Fb)(Cf) <= 1150 psi, Cm = 1.0, **when (Fc) <= 750 psi, Cm = 1.0					

Size Factor, Cf. Appropriate size adjustment factors have already been incorporated in the tabulated design values for most thicknesses of Southern Pine and Mixed Southern Pine dimension lumber. For dimension lumber 4" thick, 8" and wider (all grades except Dense Structural 86, Dense Structural 72, and Dense Structural 65), tabulated bending design values, Fb, shall be permitted to be multiplied by the size factor, Cf = 1.1. For dimension lumber wider than 12" (all grades except Dense Structural 72, and Dense Structural 65), tabulated bending design values, Fb, shall be permitted to be multiplied by the size factor, Cf = 1.1. For dimension lumber wider than 12" (all grades except Dense Structural 86, Dense Structural 72, and Dense Structural 65), tabulated bending, tension and compression parallel to grain design values for 12" wide lumber shall be multiplied by the size factor, Cf = 0.9. When the depth, d, of Dense Structural 86, Dense Structural 72, or Dense Structural 65 dimension lumber exceeds 12", the tabulated bending design value, Fb, shall be multiplied by the following size factor: Cf = $(12/d)^{(1/9)}$

Flat Use Factor, Cfu. Bending design values adjusted by size factors are based on edgewise use (load applied to narrow face). When dimension lumber is used flatwise (load applied to wide face), the bending design value, Fb, shall also be multiplied by the following flat use factors:

Width	Thickness (breadth)				
(depth)	2" & 3"	4"			
2" & 3"	1.0				
4"	1.1	1.0			
5″	1.1	1.05			
6"	1.15	1.05			
8″	1.15	1.05			
10″ & wider	1.2	1.1			

Temperature Factor, Ct. When structural members will experience sustained exposure to elevated temperatures up to 150 deg. F, Reference design values shall be multiplied by the following:

		1 1 1 0		
Reference Design	In-Service		Ct	
Values	Moisture	T <= 100 degF	100 degF <t<=125 degf<="" td=""><td>125 degF<t<=150 degf<="" td=""></t<=150></td></t<=125>	125 degF <t<=150 degf<="" td=""></t<=150>
	Conditions			
Ft, E, Emin	Wet or Dry	1.0	0.9	0.9
Fb, Fv, Fc, and Fc1	Dry	1.0	0.8	0.7
	Wet	1.0	0.7	0.5

Load Duration Factor, Cd. When structural members will sustain loads for a design period which does not exceed the normal duration for the design load, typically a cumulative duration of approximately 10 years, all reference design values except modulus of elasticity, E, modulus of elasticity for beam and column stability, Emin, and compression perpendicular to grain, Fc1, based on deformation limit shall be multiplied by the appropriate load duration factor from the table below. The duration factor, Cd for the shortest duration load in a combination of loads shall apply for that load combination.

Load Duration	Cd	Typical Design Loads
Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Two months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact*	2.0	Impact Load

*Load duration factors greater than 1.6 shall not apply to structural members pressure-treated with water-borne preservatives, or fire retardant chemicals. The impact load duration factor shall not apply to connections.

Beam Stability Factor, CL. When the depth of a bending member does not exceed its breadth, $d \le b$, no lateral support is required and CL = 1.0. When the compression edge of a bending member is supported throughout its length to prevent lateral displacement, and the ends at points of bearing have lateral support to prevent rotation, CL = 1.0. When rectangular sawn lumber bending members are laterally supported as shown below, CL = 1.0.

- (a) d/b<=2; no lateral support shall be required.
- (b) 2<d/b<=4; the ends shall be held in position, as by full depth solid blocking, bridging, hangers, nailing, or bolting to other framing members, or other acceptable means.
- (c) 4<d/b<=5; the compression edge of the member shall be held in line for its entire length to prevent lateral displacement, as by adequate sheathing or subflooring, and ends at point of bearing shall be held in position to prevent rotation and/or lateral displacement.</p>
- (d) 5<d/b<=6; bridging, full depth solid blocking or diagonal cross bracing shall be installed at intervals not exceeding 8 feet, the compression edge of the member shall be held in line as by adequate sheathing or subflooring, and the nds at points of bearing shall be held in position to prevent rotation and/or lateral displacement.</p>
- (e) 6<d/b<=7; both edges of the member shall be held in line for their entire length and ends at points of bearing shall be held in position to prevent rotation and/or lateral displacement.
- (f) If bending member is subjected to flexure and axial compression then d/b<=5, and one edge must be firmly held in line.

(g) If under all combinations of load, the un-braced edge of the member is in tension then d/b<=6.

Bearing Area Factor, Cb. Compression design values perpendicular to grain, Fc1, apply to bearings of any length at the ends of a member, and to all bearings 6" or more in length at any other location. For bearing less than 6" in length and not nearer than 3" to the end shall be multiplied by the following bearing area factor, Cb = (lb + 0.375)/lb; where lb = the bearing length measured parallel to the grain in inches. For round bearing areas such as washer, the bearing length, lb, shall be equal to the diameter. The equation gives the following bearing area factors for the indicated bearing length on such small areas as plates and washers:

lb	0.5″	1″	1.5″	2″	3″	4"	6" or more
Cb	1.75	1.38	1.25	1.19	1.13	1.10	1.00

Buckling Length Coefficient Ke

End no. 1 (bottom)	End no. 2 (top)	Design Ke
Built-in: rotation fixed,	Built-in: rotation fixed,	0.65
translation fixed	translation fixed	
Built-in: rotation fixed,	Pinned: rotation free,	0.80
translation fixed	translation fixed	
Built-in: rotation fixed,	Rotation fixed,	1.20
translation fixed	translation free	
Built-in: rotation fixed,	Free: rotation free,	2.10
translation fixed	translation free	
Pinned: rotation free,	Pinned: rotation free,	1.0
translation fixed	translation fixed	
Pinned: rotation free,	Rotation fixed,	2.4
translation fixed	translation free	

Buckling Stiffness Factor, CT. Increased chord stiffness relative to axial loads when a 2"x4" or smaller sawn lumber truss compression chord is subjected to combined flexure and axial compression under dry service condition and has 3/8" or thicker plywood sheathing nailed to the narrow face of the chord in accordance with code required roof sheathing fastener schedules, shall be permitted to be accounted for by multiplying the reference modulus of elasticity design value for beam and column stability, Emin, by the buckling stiffness factor, CT, as calculated below:

When le < 96'', CT = 1+(KMle)/(KTE); Where

le = effective column length of truss compression chord

KM = 2300 for wood seasoned to 19% moisture content or less at the time of plywood attachment.

KM=1200 for unseasoned or partially seasoned wood at the time of plywood attachment.

KT = 1.1645 (COVE)

KT = 0.59 for visually graded lumber

KT=0.75 for machine evaluated lumber (MEL)

KT = 0.82 for products with COVE<=0.11

When le>96", CT shall be calculated based on le=96".

Column Stability Factor, Cp. When a compression member is supported throughout its length to prevent lateral displacement in all directions, Cp = 1.0. For all other conditions Cp shall be calculated as follows:

 $Cp = (1+(FcE/Fc^*))/2c - ((((1+(FcE/Fc^*))/2c)^2 - (FcE/Fc^*)/c)^{0.5}); where:$

Fc* = reference compression design value parallel to grain multiplied by all applicable adjustment factors except Cp

 $Fce = (0.822Emin)/(le/d)^{2}$

c = 0.8 for sawn lumber

c = 0.85 for round timber poles and piles

c = 0.9 for structural glued laminated timber or structural composite lumber

Incising Factor, Ci. Reference design values shall be multiplied by the following incising factor, Ci, when dimension lumber is incised parallel to grain a maximum depth of 0.4", a maximum length of 3/8", and density of incisions up to 1100/ft^2. Incising factors shall be determined by test or by calculation using reduced section properties for incising patterns exceeding these limits.

Design Value Ci E, Emin 0.95 Fb, Ft, Fc, Fv 0.80 Fc1 1.00